Расчет нагрузок, действующих на крыло при данном варианте нагруженияСтраница 1
Рис.3.1. Способы замены истинного закона изменения аэродинамической силы по размаху крыла кусочно-прямоугольным и трапециевидным
В полете крыло нагружается аэродинамической распределенной нагрузкой и массовой силой от веса собственной конструкции крыла и размещенного в нем топлива.
Аэродинамическая нагрузка распределена по размаху по закону, близкому к параболическому. Расчет такой нагрузки затруднителен. Сделаем замену: в инженерных (прикидочных) расчетах можно принять допущение, что постоянен по размаху крыла, т.е. закон изменения аэродинамической силы
будет пропорционален хорде крыла
:
Так как центроплан не создает подъемной силы, несущая площадь полукрыльев равна:
где - площадь крыла из РЛЭ;
- хорда корневой нервюры;
- диаметр фюзеляжа.
Значение текущей хорды крыла можно вычислить по формуле:
Где
- хорда концевой нервюры
- длина полукрыла без центроплана
Z - текущая длина крыла
Отсюда
Подсчитаем значения аэродинамической силы на законцовке и в корне крыла
Z = 0
Z =
Считаем, что топливо распределено по крылу равномерно, тогда распределенная нагрузка от массовых сил крыла ( его собственного веса и топлива) изменяется по его размаху также пропорционально хорде :
Подсчитаем значения распределенных нагрузок от массовых сил крыла на законцовке и в корне крыла
:
Z = 0
Z =
Общая распределенная нагрузка , действующая на крыло, равна разности
и
:
рис. 3.2. Схема возникновения крутящего момента в сечении крыла
Как видно из рисунка (3.2.), погонный крутящий момент от распределенных аэродинамических и массовых
сил равен:
(Нм/м). (1.15)
Приведя подобные, мы получим:
(Нм/м) (1.16)
Обычно топливо в крыле расположено таким образом, что его ц.м. совпадает с ц.м. крыла. С учетом этого предположения, а также подставив выражение (1.7), формула (1.16) будет иметь вид:
1) Расчет крутящего момента на конце крыла, т.е. при Z=0:
Нм/м
2) Расчет крутящего момента в корневой части крыла, т.е. при Z=20,59:
Определение
коэффициента минимального лобового сопротивления для вертикального оперения
bср=4.65м ; сxaрво=k1·cf·ηc·ηм, где k1=2; ηc=1.25; ηм=0.97; сxaрво=2·0.0027·1.25·0.97=0.0066 (3.7**) где кинт=0,375; Sпф=0; ...
Материалы и общие условия
Для зубчатых колес трансмиссии автомобилей применяем легированные конструкционную сталь 35Х. Термической обработкой достигается высокая твердость рабочих поверхностей зубьев и необходимая прочность их вязкой сердцевины. Хромистая сталь с содержанием углерода 0,35% и более (35Х) подвергается цианиро ...
Показатели использования транспортных средств, методика
их расчёта
Транспортные средства и транспортные коммуникации характеризуются высокой капитальностью. Поэтому вполне справедливым является утверждение большинства учёных - экономистов, в том числе Котелянца А.П., Миротина Л.Б., о том, что высокая инвестиционная составляющая по транспорту оправдывается только п ...