Оптимизация при реализации решений в условиях рискаСтраница 2
Как видно из приведенных данных, вероятности возникновения ущерба при выборе того или иного инвестора составляют в сумме 1, т.е. выбор одного из трех инвесторов лицом, принимающим решение, сделан.
Второй этап реализации проекта может характеризоваться, например, предложениями по поставке сырья от четырех поставщиков со следующими характеристиками (табл.7):
Таблица 7
Поставщики | |||
1 |
2 |
3 |
4 |
р121=0,2 |
р122=0,3 |
р123=0,4 |
р124=0,1 |
а121=200 у.е. |
а122=230 у.е. |
а123=300 у.е. |
а124=200 у.е. |
b121=500 у.е. |
b122=500 у.е. |
b123=700 у.е. |
b124=500 у.е. |
На третьем этапе (производство и сбыт) реализации проекта с учетом различных объемов производства возможны три варианта сбыта (табл.8):
Таблица 8
Сбыт | ||
1 |
2 |
3 |
р231=0,1 |
р232=0,3 |
р233=0,6 |
а231=200 у.е. |
а232=300 у.е. |
а233=350 у.е. |
b231=600 у.е. |
b232=750 у.е. |
b233=800 у.е. |
Предположим, что математическое ожидание ущерба при реализации проекта не должно превышать 100 у.е. (допустимый риск).
Решение
Как уже отмечалось, задача (1) относится к классу задач дискретного математического программирования. Точное решение такой задачи может быть найдено с помощью алгоритма, построенного на основе одной из вычислительных схем сокращенного перебора вариантов, например, метода ветвей и границ.
Реализация метода ветвей и границ в вычислительный алгоритм связана с определенными трудностями:
необходимо задать правило ветвления вариантов;
требуется задать процедуру оценки вариантов решений;
необходимо запомнить большие массивы информации в памяти ЭВМ и др.
В ряде практических случаев эти трудности преодолеваются на основе эвристических рассуждений при построении алгоритма решения.
Для рассматриваемой задачи алгоритм решения может быть построен с помощью следующих эвристических правил.
Обеспечение максимума прибыли на каждом этапе реализации проекта. Аналитически данное решающее правило может быть записано следующим образом:
(3)
Обеспечение минимума потерь на каждом этапе реализации проекта. Это правило может быть записано как
(4)
3. Обеспечение максимума удельной прибыли на каждом этапе реализации проекта, т.е.
(5)
С учетом сформулированных правил решение поставленной задачи будет выглядеть следующим образом.
1. По максимуму прибыли на каждом этапе реализации проекта.
Степень подвижности механизма
Степень подвижности механизма W определяется по формуле Чебышева: , где - число подвижных звеньев; - число кинематических пар V класса; - число кинематических пар IV класса. В данном механизме в результате проведенного выше исследования получено ; ; . Определяем степень подвижности механизма: т. е. ...
Производственная санитария и гигиена
Запрещается принимать пищу в производственных помещениях. Бытовые помещения должны содержаться в чистоте, регулярно проветриваться. К санитарно–бытовым помещениям относятся гардеробные, места для приёма пищи, умывальные, сушилки, душевые и места для обогрева ,медпункты. Все работники обязаны выполн ...
Анализ условий движения на участке улично-дорожной сети
светофорный регулирование движение дорожный Объектом анализа условий и организации движения выбрана улица Б. Царикова г. Гомель, которая имеет в ширину 12 метров и разбита на 4 полосы движения, по две полосы для движения в каждом направлении. Ширина каждой из полос составляет 3 метра, в районе пере ...