Оптимизация при реализации решений в условиях рискаСтраница 2
Как видно из приведенных данных, вероятности возникновения ущерба при выборе того или иного инвестора составляют в сумме 1, т.е. выбор одного из трех инвесторов лицом, принимающим решение, сделан.
Второй этап реализации проекта может характеризоваться, например, предложениями по поставке сырья от четырех поставщиков со следующими характеристиками (табл.7):
Таблица 7
Поставщики | |||
1 |
2 |
3 |
4 |
р121=0,2 |
р122=0,3 |
р123=0,4 |
р124=0,1 |
а121=200 у.е. |
а122=230 у.е. |
а123=300 у.е. |
а124=200 у.е. |
b121=500 у.е. |
b122=500 у.е. |
b123=700 у.е. |
b124=500 у.е. |
На третьем этапе (производство и сбыт) реализации проекта с учетом различных объемов производства возможны три варианта сбыта (табл.8):
Таблица 8
Сбыт | ||
1 |
2 |
3 |
р231=0,1 |
р232=0,3 |
р233=0,6 |
а231=200 у.е. |
а232=300 у.е. |
а233=350 у.е. |
b231=600 у.е. |
b232=750 у.е. |
b233=800 у.е. |
Предположим, что математическое ожидание ущерба при реализации проекта не должно превышать 100 у.е. (допустимый риск).
Решение
Как уже отмечалось, задача (1) относится к классу задач дискретного математического программирования. Точное решение такой задачи может быть найдено с помощью алгоритма, построенного на основе одной из вычислительных схем сокращенного перебора вариантов, например, метода ветвей и границ.
Реализация метода ветвей и границ в вычислительный алгоритм связана с определенными трудностями:
необходимо задать правило ветвления вариантов;
требуется задать процедуру оценки вариантов решений;
необходимо запомнить большие массивы информации в памяти ЭВМ и др.
В ряде практических случаев эти трудности преодолеваются на основе эвристических рассуждений при построении алгоритма решения.
Для рассматриваемой задачи алгоритм решения может быть построен с помощью следующих эвристических правил.
Обеспечение максимума прибыли на каждом этапе реализации проекта. Аналитически данное решающее правило может быть записано следующим образом:
(3)
Обеспечение минимума потерь на каждом этапе реализации проекта. Это правило может быть записано как
(4)
3. Обеспечение максимума удельной прибыли на каждом этапе реализации проекта, т.е.
(5)
С учетом сформулированных правил решение поставленной задачи будет выглядеть следующим образом.
1. По максимуму прибыли на каждом этапе реализации проекта.
Мощность насоса
Мощность насоса при растормаживании Nн.п = РАQA/ηн, Вт где: РА, QA - координаты точек рабочего режима (рис. 2); ηн – номинальный КПД насоса. ...
Паромное сообщение на Балтике
Широко развито паромное сообщение в Балтийском бассейне между Финляндией, Швецией и Германией, портами Эстонии, Латвии и Литвы. Незамерзающее водное пространство Балтийского моря (замерзают только Ботнический и Финский заливы) позволяет организовать круглогодичное регулярное паромное сообще ...
Технико-экономические показатели эффективности проекта
Таблица № 18 № Наименование Значение показателей 1. Производственная программа, шт. 150 2. Трудоемкость, чел.-час. 6,75 3. Технологическая себестоимость, руб. 722,587 4. Полная себестоимость услуги, руб. 1899,855 5. Цена услуги, руб. 2518,112 6. Критический объём реализации услуг, шт. 121 7. Запас ...