Анализ перспективных бесконтактных систем управления автоматическими
швартовными лебедкамиСтраница 2
Принципиальная схема электропривода автоматической швартовной лебедки с трехскоростным двигателем и с контроллером КБТ приведена на Рис.1.6. Здесь предусматривается ступенчатый пуск и торможение. Управление тиристорами в контроллерах КБТ осуществляется анодным напряжением, прикладываемым к тиристорам. Принципиальная схема тиристорного коммутатора (в одной фазе) с таким управлением показана на Рис.1.7.
Коммутация управляющих цепей тиристоров производится здесь с помощью герметизированных магнитоуправляемых контактов (герконов), которые из – за своей высокочувствительности хорошо сочетаются с полупроводниковыми элементами. В контроллерах предусмотрены нулевые и тепловые защиты тиристоров от перенапряжений (БЗП). Защита тиристоров от токов короткого замыкания осуществляется с помощью автоматического выключателя. Контроль включения тиристорных коммутаторов производится с помощью реле РК1 – РК3. Конструктивно контроллеры выполняются в виде съемных блоков, размещенных в шкафах. По габаритам контроллеры в 1,3 – 1,5 раза превышают соответствующие исполнения магнитных контроллеров с релейно – контакторной аппаратурой.
Серия КТБ построена на применении тиристоров ВКДУ 150. Она рассчитана на управление двигателями мощностью 20 – 30 кВт. С целью расширения диапазона мощностей предполагается использовать в контроллерах таблеточные тиристоры Т320.
При автоматическом режиме работы сигнал на травление или выбирание каната поступает от механического взвешивающего устройства в систему управления тиристорными блоками.
Рис. 1.6. Силовая часть электропривода АШЛ с бесконтактной коммутацией (сконтроллером КБТ).
Рис. 1.7. Принципиальная схема тиристорного коммутатора (в одной фазе).
Системы с бестоковой коммутацией обладают наиболее высокими надежностными показателями. Однако характерным для этих является значительное увеличение габаритов станций управления, особенно с ростом мощности привода. Это ограничивает область применения систем с бестоковой коммутацией.
В судовых электроприводах все более широкое распрастранение находят контроллеры с совместным применением как контактной, так и бесконтактной аппаратуры. Такое совмещение аппаратов позволяет получить более простые системы, приближающиеся по своему построению к обычным релейно – контакторным структурам, но отличающиеся от них гораздо большим уровнем электрической износоустойчивости коммутационных аппаратов.
В настоящее время разработано несколько схемных решений электропривода автоматической швартовной лебедки с бестоковой коммутацией. Построение таких систем для электроприводов с трехскоростными короткозамкнутыми двигателями возможно на основе двух решений:
1. Шунтирование главных контактов контактора цепочками состоящими из встречно – параллельно включенных тиристоров;
2. Включение последовательно с главными контактами цепочек из встречно – параллельно включенных тиристоров.
В обоих случаях коммутацию тока в цепи двигателя можно осуществлять тиристорами, а все переключения без тока – контактными элементами контакторов или других коммутационных, например, кулачковых контроллеров. Тем самым электрическая износоустойчивость контактных аппаратов, используемых в электроприводе, приближается к уровню их механической износоустойчивости.
Бестоковая коммутация в первом случае получается за счет применения для обычных контакторов специальных блоков бестоковой коммутации. Такой блок для одной фазы (Рис.1.8) состоит из двух встречно - параллельно включенных тиристоров Т1 и Т2, шунтирующих главный контакт ГК контактора и блоков управления БУ1 и БУ2 с трансформатором тока Тр. Бестоковая коммутация достигается за счет шунтирования главного контакта ГК, что исключает дуговой разряд на контактном промежутке. В момент замыкания главного контакта через первичную обмотку трансформатора Тр начинает протекать ток, благодаря чему на тиристоры поступают сигналы управления. Тиристоры открываются и шунтируют цепь главного контакта. Закрывание тиристоров осуществляется или при переходе тока через нуль, или при достижении нормального контактного нажатия на главных контактах, когда тиристоры оказываются зашунтированными. В промежутках между коммутациями при любом токе нагрузки, в пределах рабочих токов, тиристоры находятся в открытом состоянии по цепи управления, но зашунтированы главными контактами. При размыкании главного контакта коммутация тока происходит через тиристоры, которые запираются при переходе тока через нуль. Тиристорные блоки крепятся непосредственно на контакторах. Электрическая износостойкость контакторов приближается к 1 млн. циклов.
Определение длин
рельсовых нитей стрелочного перевода
Длины рельсовых нитей стрелочного перевода (рис. 1.8) находят по формулам: (1.28) (1.29) (1.30) (1.31) где и – ширина колеи в начале остряков и в переводной кривой, мм. Величины зазоров в стыках рельсов принимаются согласно типовым эпюрам стрелочных переводов. В задних стыках рамных рельсов и во вс ...
Обмен данными посредством
шины CAN
Применяемая на автомобилях система CAN позволяет объединить в локальную сеть электронные блоки управления или сложные датчики. Обозначение CAN является аббревиатурой от английского словосочетания Controller Area Network (локальная сеть, связывающая блоки управления). Применение системы CAN на автом ...
Определение числа циклов перемены напряжений шестерни и колеса
NH1=60·n1·c1·t=; NH2=60·n2·c2·t=; с1 и c2 –количества контактов зубьев шестерни колеса за один оборот; t-срок службы передачи; Определение допускаемых напряжений а) контактные: [σH]=·ZR· ZE·KL·KХН·KHL≈0.9·· KHL; σHO1=18·45+150=960 МПа; [σH]1=0,9×1=785,455 Mпа; σHO2=1 ...